Public Review Process Established

- ✓ Sept. 1995 Joint Sponsors (Sprint, U S WEST, NYNEX, MCI) filed initial release
 - Filed in time for comment round in CC Docket 80-286
- ✓ Dec. 1995 filed data for 49 states
- ✓ Four Workshops held 200 representatives from industry and government participated
- ✓ Comments provided in initial and reply comment rounds in CC Dockets 80-286 and 96-45.
- ✓ Based upon input received, Joint Sponsors proposed modifications in ex parte filings made 1/26/96 and 2/21/96.
- 4 BCM2 filed 7/5/96 by U S WEST and Sprint is a result of this public process.

Misuse of Original BCM

- ✓ Original BCM was not designed to develop the total cost of basic telephone service
- ✓ Primary intent was to identify high cost CBGs for which explicit support might be required.
- ✓ Little attention was devoted to identifying costs unique to urban environments
- ✓ Costs components which would be similar between high-cost and low-cost areas were omitted (e.g. drop, pedestal, etc.)
- ✓ BCM2 designed to enhance BCM BCM2 reflects the total cost of providing service BCM2 can serve as a critique of these other studies.

CENSUS BLOCK GROUPS (CBGs)

- Defined by U.S. Bureau of the Census
- 250 550 Housing Units
- Ideal Size of 400 Units

Major Changes from BCM to BCM2:

✓ General

- BCM2 Analysis Done for all 50 States and District of Columbia. Will be run soon for Puerto Rico, Virgin Islands and Micronesia
- Includes all Cost Elements of Basic Telephone Service
- Better Identifies Costs in Urban Environments
- Includes all Types of Loops (Including Business) by CBG
- Enhancements Provide More Flexibility and Faster Processing of the Model.

Major Changes from BCM to BCM2 (Con't):

- ✓ Rural Area Specific BCM2 Enhancements
 - Sparsely Populated Areas Treated to Remove Areas with Little or No Population
 - Loop Investments Capped to Reflect Emerging "Wireless Loop" Technology

Major changes from BCM to BCM2 (Con't):

✓ Overall BCM2 Enhancements:

- Business Lines and Lines per Household added
- Distribution plant "legs" based on number of housing lots
- Structure and placing costs based on per foot costs
- Feeder plant extends into CBG where appropriate
- Investments for Drop Wire, Network Interface Device, Pedestal, Splicing, etc. added.
- Switch Module reflects five different switch sizes including remotes
- Digital Loop Carrier costs on fixed and per line basis
- Expenses developed separately for plant related and others related to lines
- Slope variable added that impacts loop length.

Major changes from BCM to BCM2 (Con't):

- ✓ User Interface Changes:
 - Menu Driven
 - All User Adjustable inputs consolidated formerly hard-coded items now user adjustable
 - More efficient processing
 - Copper/Fiber breakpoints user selectable

ASSUMPTIONS: LOOP TECHNOLOGY

- Distribution Plant Analog Copper Technology
 Fiber
- Analog Copper Feeder Where Loop Length < 9,000; 12,000; 15,000; 18,000 - User Adjustable Input
- Fiber Feeder For Digital Subscriber Line Carrier Where Loop Length >User Set Maximum
 - Remote Terminal At Feeder Plant End May be within the CBG
- Two Types of Digital Loop Carrier Systems
 - SLC series 2000 for terminals needing capacity > 240 lines
 - AFC for terminals needing capacity < 240 lines
 - Both products utilized in drop/add configurations with SLC having total capacity of 2016 VG Channels per four fibers and AFC have total capacity of 672 VG channels per 4 fibers

ASSUMPTIONS: FEEDER PLANT ARCHITECTURE

- Feeder Cable Begins at CO and extends to the appropriate interface point within the CBG
- 4 Main Feeder Routes Leave CO with Feeder Route Boundaries at 45° Angle From Main Route
- Cable and Fiber Feeder Systems Share Structure In Main Feeder Systems
- Main Feeder Routes are Segmented at Taper Points
- Each Feeder Segment's Cable Size Determined By Segment Capacity
- Feeder Cable Size From 25 Pair to 4200 Pair, Fiber Cable Size from 12 Strand to 144 Strand

FEEDER PLANT

Feeder Plant Changes From BCM to BCM2

- ✓ Copper/Fiber Breakpoint is User Selectable
- ✓ Fiber May Extend into CBG to Ensure Copper Distance Does Not Exceed Copper/Fiber Breakpoint
- ✓ Smaller Copper Cable Sizes Available for Feeder
- ✓ Costs of In-Line Terminals, Cross Connects, Splicing, and Engineering Included

ASSUMPTIONS: DISTRIBUTION PLANT ARCHITECTURE

- Households Are Evenly Distributed in CBG
- Distribution Cable Begins at End of Feeder and Ends at Customer Premises
- Distribution Plant Designed to Reach All Households in CBG through Placing of Cables between Subdivision Lot Lines
- Copper Distribution Length Limited at User Adjustable Maximum
- Distribution Cable Size from 12 Pair to 3600 Pair
- A Percentage of Business Lines Terminated at DS1 Level Signal
- Investments Include Network Interface Device, Drop, Pedestal, In-Line Terminals, Splicing, and Engineering
- Fiber Utilized Below Distance Breakpoint in CBGs Where Line Demand Exceeds Maximum Copper Cable Size

Distribution Plant with Fiber Copper Facility --**Drop Wire** Remote Digital Terminal Fiber Facility Pedestal

Distribution Plant with Copper

ASSUMPTIONS: SWITCH TECHNOLOGY

- GENERIC DIGITAL SWITCH COSTS FOR 5 SIZE SWITCHES
 - Remote
 - Up TO 10,000 Lines
 - 10,000 < 60,000 Lines
 - 60,000 < 100,000 Lines
 - ->100,000 Lines
 - Split Between Common Costs and Per Line Costs
 - Common Costs Include:
 - » Central Processor Frames
 - » Billing and Data Recording Equip and Frames
 - » Misc. Power Equip and Back Up Power
 - » Main Distribution Frame
 - » Frames For Testing
 - » Basic Software

ASSUMPTIONS: DENSITY

- Density determined by Households & Business Lines per Sq. Mile
- . Determines Mixture of Aerial, Underground, & Buried Plant
- Determines Fill Factor User Adjustable Input
- 6 Density Groupings
 - 0 < And <= 5</pre>
 - 5 < And <= 200
 - 200 < And <= 650
 - 650 < And <= 850
 - 850 < And <= 2550</p>
 - -2550 +
- Density Group Determines Mix of Activities in Placing Plant and the Cost Per Foot to Place Plant - User Adjustable Input

ASSUMPTIONS: TERRAIN PLACEMENT COST

- Placement Depths For Copper 24"; For Fiber 36" User Adjustable Input
- Critical Water Table Depth 36" User Adjustable
- Terrain Indicators (Originate At U.S.D.A./S.C.S.) Include:
 - Depth to Water Table
 - Depth to Bedrock
 - Hardness of Bedrock
 - Surface Soil Texture
- If Water Table or Bedrock Within Placement Depth, Then Structure Costs Reflect Additional Construction
- Otherwise, Surface Texture Examined For Plowing Difficulty

ASSUMPTIONS: CABLE, FIBER, EQUIPMENT COSTS

- Prices For Cable, Fiber, Switching, & Circuit Equipment Are List Prices (Non-Volume Discount)
- Separate Discounts For Cable, Fiber, Circuit Equipment & Switching -- User Adjustable Input
- Copper Cable is 24 & 26 Gauge
- Buried Cable is Armored & Filled

ASSUMPTIONS: STRUCTURE COSTS

- Definition: Cost of Conduit, Innerduct, Poles etc., and Capitalized Costs of Placing Plant
- Calculated as a Cost Per Foot
- Factor Varies By Plant Type, Terrain, and Density Group
- Each Density Group and Terrain Difficulty Reflects a Different Mix of Placement Activities

FEEDER & DISTRIBUTION PLANT DISTANCE

- Feeder Plant Calculations Based On Airline Distance Between CBG and Closest Central Office
- Distribution Plant Calculations Based on Size of CBGs after Using Road Network to Reduce size to Populated CBG Area
- SCS Slope Measurements Trigger Distance Adjustments
- Utilizes Tree and Branch Topology
- Determination of Quadrant For Feeder Plant

Assumptions: Slope Impacts Loop Distance

Minimum Slope Trigger - in Degrees - User Adjustable Input

Maximum Slope Trigger - in Degrees - User Adjustable Input

Minimum Slope Factor - Multiple Used With Calculated Distance

Maximum Slope Factor - Multiple Used With Calculated Distance

Combined Slope Factor - Multiple Used With Calculated Distance

User Adj. Inputs

DETERMINATION OF FEEDER QUADRANT

FEEDER DISTANCE CALCULATION

SHARED FEEDER DISTANCE CALCULATION

SEGMENT CABLE SIZE

